Introduction to MrBayes

Fred(rik) Ronquist

Dept. Bioinformatics and Genetics Swedish Museum of Natural History, Stockholm, Sweden

Installing MrBayes

- Two options:
 - Go to <u>mrbayes.net</u>, click Download and follow the instructions to download the current release (3.2.6)
 - OR go to <u>https://github.com/</u> <u>NBISweden/MrBayes/releases</u> to download the prerelease of the next version (3.2.7) (but you have to compile this yourself on your machine)

Running MrBayes

- Use execute to bring data in a Nexus file into MrBayes
- Set the model and priors using lset and prset
- Run the chain using mcmc; results in a set of .p and .t files
- The .t files contain tree samples in Nexus format
- The .p files contain tab-delimited samples of the model parameters
- Summarize the parameter samples using sump
- Summarize the tree samples using sumt

Convergence Diagnostics

- By default, MrBayes performs two independent analyses starting from different random trees (mcmc nruns=2)
- Average standard deviation of split frequencies calculated and presented during the run (mcmc mcmcdiagn=yes diagnfreq=5000) and written to file (.mcmc). Suggested target < 0.05.
- Standard deviation of each clade frequency and potential scale reduction for branch lengths calculated with sumt
- Potential scale reduction calculated for all substitution model parameters with sump
- Other tools: Awty and Tracer

Files output by MrBayes

<u>During an mcmc run</u>

myfile.mcmc
myfile.run1.p
myfile.run2.p
myfile.run1.t
myfile.run2.t

Mcmc run diagnostics Parameter samples " -Tree samples

After sump myfile.pstat myfile.lstat

Parameter statistics Model likelihood estimates

After sumt

myfile.con.tre
myfile.trprobs
myfile.parts
myfile.tstat
myfile.vstat

Consensus tree (FigTree fmt by def) Sampled trees and their probabilities Specification of clades or splits Tree statistics Branch length statistics

MrBayes 3.2 additions

- Use combinations of hard, negative, and partial (backbone) constraints on topologies
- Relaxed clocks and dating
- Multi-species coalescent (the BEST model)
- Model jumping across the GTR subspace
- Estimate Bayes factors using stepping-stone sampling
- New tree proposals
- Faster likelihood calculation

Substitution Model Space

GTR model parameters

- π state frequencies
- r exchangeability rates

$$\boldsymbol{\pi} = \{ \pi_{A}, \pi_{C}, \pi_{G}, \pi_{T} \}$$
$$\boldsymbol{r} = \{ r_{AC}, r_{AG}, r_{AT}, r_{CG}, r_{CT}, r_{GT} \}$$

<u>Model</u>	<u>Rate vector</u>	<u>Restr. Growth Fxn</u>	<u>K</u>	
GTR	$\mathbf{r} = \{\mathbf{r}_{AC}, \mathbf{r}_{AG}, \mathbf{r}_{AT}, \mathbf{r}_{CG}, \mathbf{r}_{CT}, \mathbf{r}_{GT}\}$	{1,2,3,4,5,6}	6	
НКУ	$\mathbf{r} = \{r_{tv}, r_{ti}, r_{tv}, r_{tv}, r_{ti}, r_{tv}\}$	{1,2,1,1,2,1}	2	
F81	r = {r, r, r, r, r, r }	{1,1,1,1,1,1}	1	

Table 1 All Possible Time-Reversible Models of DNA Substitution

K			Models		
1	$M_1 = 111111$				
2	$M_2 = 122222$	$M_{\lambda} = 121111$	$M_4 = 112111$	$M_5 = 111211$	$M_6 = 111121$
	$M_7 = 111112$	$M_8 = 112222$	$M_9 = 121222$	$M_{10} = 122122$	$M_{11} = 122212$
	$M_{12} = 122221$	$M_{13} = 122111$	$M_{14} = 121211$	$M_{15} = 121121$	$M_{16} = 121112$
	$M_{17} = 112211$	$M_{18} = 112121$	$M_{19} = 112112$	$M_{20} = 111221$	$M_{21} = 111212$
	$M_{22} = 111122$	$M_{23} = 111222$	$M_{24} = 112122$	$M_{25} = 112212$	$M_{26} = 112221$
	$M_{27} = 121122$	$M_{28} = 121212$	$M_{29} = 121221$	$M_{30} = 122112$	$M_{31} = 122121$
	$M_{32} = 122211$				
3	$M_{33} = 123333$	$M_{34} = 123222$	$M_{35} = 122322$	$M_{36} = 122232$	$M_{37} = 122223$
	$M_{38} = 123111$	$M_{39} = 121311$	$M_{40} = 121131$	$M_{41} = 121113$	$M_{42} = 112311$
	$M_{43} = 112131$	$M_{44} = 112113$	$M_{45} = 111231$	$M_{46} = 111213$	$M_{47} = 111123$
	$M_{48} = 122333$	$M_{49} = 123233$	$M_{50} = 123323$	$M_{51} = 123332$	$M_{52} = 123322$
	$M_{53} = 123232$	$M_{54} = 123223$	$M_{55} = 122332$	$M_{56} = 122323$	$M_{57} = 122233$
	$M_{58} = 121333$	$M_{89} = 123133$	$M_{60} = 123313$	$M_{61} = 123331$	$M_{62} = 112333$
	$M_{63} = 112322$	$M_{64} = 112232$	$M_{65} = 112223$	$M_{66} = 123122$	$M_{67} = 123212$
	$M_{68} = 123221$	$M_{69} = 121322$	$M_{70} = 121232$	$M_{71} = 121223$	$M_{72} = 122312$
	$M_{23} = 122321$	$M_{74} = 122132$	$M_{15} = 122123$	$M_{76} = 122231$	$M_{77} = 122213$
	$M_{78} = 123311$	$M_{79} = 123131$	$M_{80} = 123113$	$M_{81} = 121331$	$M_{82} = 121313$
	$M_{83} = 121133$	$M_{84} = 125211$ $M_{-} = 122112$	$M_{85} = 125121$ $M_{-} = 121321$	$M_{86} = 125112$ $M_{-} = 121212$	$M_{87} = 122311$ $M_{-} = 121231$
	$M_{33} = 122131$ $M_{-1} = 121213$	$M_{89} = 122113$ $M_{ee} = 121132$	$M_{90} = 121521$ $M_{12} = 121123$	$M_{91} = 121312$ $M_{11} = 112331$	$M_{92} = 121251$ $M_{12} = 112313$
	$M_{\odot} = 1121213$ $M_{\odot} = 112133$	$M_{\odot} = 112321$	$M_{195} = 121123$	$M_{96} = 112331$ $M_{exc} = 112231$	$M_{reg} = 112313$ $M_{reg} = 112213$
	$M_{reg} = 112133$ $M_{reg} = 112132$	$M_{100} = 112521$ $M_{100} = 112123$	$M_{100} = 112312$ $M_{100} = 111233$	$M_{101} = 112231$ $M_{102} = 111232$	$M_{102} = 112213$ $M_{102} = 111223$
	$M_{100} = 112733$	$M_{104} = 112323$	$M_{100} = 112332$	$M_{100} = 121233$	$M_{107} = 121323$
	$M_{\rm tra} = 121332$	$M_{111} = 122133$	$M_{110} = 122313$	$M_{\rm tre} = 122331$	$M_{112} = 123123$
	$M_{110} = 123132$	$M_{110} = 123213$	$M_{120} = 123231$	$M_{121} = 123312$	$M_{122} = 123321$
4	$M_{exc} = 123444$	$M_{\rm ev} = 123433$	$M_{\rm ev} = 123343$	$M_{ex} = 123334$	$M_{\rm err} = 123422$
-	$M_{123} = 123747$ $M_{123} = 123242$	$M_{124} = 123433$ $M_{122} = 123224$	$M_{125} = 120040$ $M_{112} = 122342$	$M_{120} = 120004$ $M_{11} = 122324$	$M_{127} = 1239422$
	$M_{123} = 123411$	$M_{124} = 123141$	$M_{130} = 123114$	$M_{124} = 121341$	$M_{132} = 121314$
	$M_{138} = 121134$	$M_{130} = 112341$	$M_{140} = 112314$	$M_{141} = 112134$	$M_{142} = 111234$
	$M_{143} = 123344$	$M_{144} = 123434$	$M_{145} = 123443$	$M_{146} = 123244$	$M_{147} = 123424$
	$M_{148} = 123442$	$M_{149} = 122344$	$M_{150} = 122343$	$M_{151} = 122334$	$M_{152} = 123423$
	$M_{153} = 123432$	$M_{154} = 123243$	$M_{155} = 123234$	$M_{156} = 123342$	$M_{157} = 123324$
	$M_{158} = 123144$	$M_{159} = 123414$	$M_{160} = 123441$	$M_{161} = 121344$	$M_{162} = 121343$
	$M_{163} = 121334$	$M_{164} = 123413$	$M_{165} = 123431$	$M_{166} = 123143$	$M_{167} = 123134$
	$M_{168} = 123341$	$M_{169} = 123314$	$M_{170} = 112344$	$M_{171} = 112343$	$M_{172} = 112334$
	$M_{173} = 112342$	$M_{174} = 112324$	$M_{175} = 112234$	$M_{176} = 123412$	$M_{177} = 123421$
	$M_{178} = 123142$	$M_{179} = 123124$	$M_{180} = 123241$	$M_{181} = 123214$	$M_{182} = 121342$
	$M_{183} = 121324$	$M_{184} = 121234$	$M_{185} = 122341$	$M_{186} = 122314$	$M_{187} = 122134$
5	$M_{188} = 123455$	$M_{189} = 123454$	$M_{190} = 123445$	$M_{191} = 123453$	$M_{192} = 123435$
	$M_{195} = 123345$	$M_{194} = 123452$	$M_{195} = 123425$	$M_{196} = 123245$	$M_{197} = 122345$
	$M_{198} = 123451$	$M_{199} = 123415$	$M_{200} = 123145$	$M_{201} = 121345$	$M_{202} = 112345$
6	$M_{205} = 123456$				

All 203 submodels of GTR

Note.-K is the number of substitution types. The named models are M1, M15, M40, M122, M168, M195, and M203-

Huelsenbeck et al., 2004, MBE

Fixed number of substitution types

lset nst=1 lset nst=2 lset nst=6

Integrate over 203 models

lset nst=mixed

357 taxa, ~3 kb, atpB + rbcL

Resources

- MrBayes web site (<u>mrbayes.net</u>)
- Online help in the program (type help or help <command>)
- MrBayes 3.2 manual with tutorials. The first two tutorials are strongly recommended for beginners: a simple analysis (primates.nex) and an analysis of partitioned data (cynmix.nex).
- Graphical summaries of the MrBayes 3.2 models in the manual (Appendix)
- Books and Papers:
 - Nielsen (ed.) chapter: intro + complex partitioned analysis (kim.nex) (version 3.1)
 - Lemey et al (ed.) chapter: intro + tutorials (version 3.2)
 - Annual Review of Entomology: Review of Bayesian phylogenetics
 - Phylogenetic Trees Made Easy

Some Advice

- If you use ModelTest or MrModelTest: Do not fix parameters in MrBayes
- Run at least 1,000,000 generations
- Don't worry if average standard deviation of split frequencies (ASDSF) increases in the beginning of the run
- Save time by running the analysis without heating, if it works
- Experiment with MPI, SSE and Beagle code to find the fastest combination on your machine
- If you have difficulties with convergence:
 - Change relative proposal probabilities or tuning parameters
 - If you use heated chains and there are few swaps between chains, try to lower the temperature coefficient
 - Increase the number of heated chains
 - Run the analysis longer
 - Make the model more realistic
 - Start with randomly perturbed good trees