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1. Probability 101



Do not worry about your 

difficulties in Mathematics. I 

can assure you that mine 

are still greater.

Albert Einstein





 Uniform distribution







Beta distribution

Gamma distribution

Dirichlet distribution

Exponential distribution

Continuous probability distributions
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Sample space

   

w1

   

w2

   

w3

   

w4

   

w5

   

w6

  

E = w1,w3,w5{ } Event (subset of outcomes;

e.g., face with odd number)

Distribution function

(E.g., uniform)

  

m(w)

   

Pr(E) = m(w)
w ÎE

å Probability

Random variable X
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(an interval)

Disc with 

circumference 1

   

f (x)
Probability density 

function (pdf)

(e.g. Uniform(0,1))

   

Pr(E) = f (x)
xÎE

ò dx Probability

  

E = a,b[ ) Event (a subspace of the 

sample space)

a b

Random variable X
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• Uniform distribution

• Beta distribution

• Gamma distribution

• Dirichlet distribution

• Exponential distribution

• Normal distribution

• Lognormal distribution

• Multivariate normal distribution

Continuous Distributions
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• Bernoulli distribution

• Categorical distribution

• Binomial distribution

• Multinomial distribution

• Poisson distribution

Discrete Distributions
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• Markov chain

• Poisson process

• Birth-death process

• Coalescence

• Dirichlet Process Mixture

Stochastic Processes
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f (x) = le-lx

Mean:

  

1/l
   

l = rate (of decay)

  

Exp(l)X ~

Parameters:

Probability density function:

Exponential distribution
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f (x) µ xa-1e-bx

Mean:

   

a /b
   

a = shape

  

Gamma(a,b)X ~

Parameters:

Probability density function:

Gamma distribution

   

b = inverse scale

Scaled gamma:

  

a = b

Scaled Gamma
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f (x) µ xa1 -1(1- x)a2 -1

Mode:

   

a1 -1

a i -1( )
i

å  

a1,a2 = shape parameters

  

Beta(a1,a2)X ~

Parameters:

Probability density function:

Beta distribution

Defined on two proportions of a whole

(a simplex)
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f (x) µ xi
a i -1

i

Õ

   

a = vector of k shape parameters

  

Dir(a) :a = a1,a2,...,ak{ }X ~

Parameters:

Probability density function:

Dirichlet distribution

Defined on k proportions of a whole

Dir(1,1,1,1)

Dir(300,300,300,300)
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Pr(H) =
4

10
= 0.4

   

Pr(D) =
3

10
= 0.3

   

Pr(D,H) =
2

10
= 0.2Joint probability:

   

Pr(D |H) =
2

4
= 0.5Conditional probability:
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Reverend Thomas Bayes

(1701-1760) 

  

Pr(A |B) Þ Pr(B | A) ?
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Pr(D,H) = Pr(D)Pr(H |D)

  

= Pr(H)Pr(D |H)

  

Pr(D)Pr(H |D) = Pr(H)Pr(D |H)

Bayes’ rule

   

Pr(H |D) =
Pr(H)Pr(D |H)

Pr(D)

   

=
3

10
´

2

3
=

2

10
= 0.2

   

=
4

10
´

2

4
=

2

10
= 0.2
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Pr(D |q)

Maximum Likelihood Inference

Data D; Model M with parameters 

We can calculate or

  

f (D |q)

Maximum likelihood: find the value of  that

maximizes L()

Define the likelihood function L(q)µ f (D |q)

Confidence: asymptotic behavior, more

samples, bootstrapping
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Pr(D |q)

Bayesian Inference

Data D; Model M with parameters 

We can calculate or

  

f (D |q)

We are actually interested in

  

Pr(q |D) or

  

f (q |D)

Bayes’ rule:

   

f (q |D) =
f (q) f (D |q)

f (D)

Posterior density
Prior density

”Likelihood”

Normalizing constant

Marginal likelihood of the data

Model likelihood

  

f (D) = f (q)ò f (D |q) dq



Coin Tossing Example





What is the probability of 
your favorite team winning 
the next ice hockey World 
Championships?



Gold Silver Bronze

2012

2013

2014

World Championship Medalists

other

2

5

8

1

5

5

3

1

Medals

2011

2007

2008

2009

2010

2015

2016



other

2

5

8

1

5

5

3

1

Prior

( )f 

other

2

0

8

0

0

5

3

0

Posterior 1

1( | )f D

other

0

0

0

0

0

5

0

0

Posterior 2

2( | )f D

other

in

out

in

out

out

in

in

out

Data 1

other

out

out

out

out

out

won

out

out

Data 2

( )f  1 2( | )f D D 



Learn more:

• Wikipedia (good texts on most statistical distributions, 
sometimes a little difficult)

• Grinstead & Snell: Introduction to Probability. 
American Mathematical Society. Free pdf available 
from: 
http://www.dartmouth.edu/~chance/teaching_aids/bo
oks_articles/probability_book/amsbook.mac.pdf

• Team up with a statistician or a computational / 
theoretical evolutionary biologist!

http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf


2. Bayesian Phylogenetic 
Inference



Infer relationships among three species:

Outgroup:



Three possible trees (topologies):

A

B

C



A B C

Prior distribution

pr
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it

y 1.0

Posterior distribution

pr
ob

ab
il
it

y 1.0

Data (observations)

Model



   

D The data

Taxon Characters

A ACG TTA TTA AAT TGT CCT CTT TTC AGA

B ACG TGT TTC GAT CGT CCT CTT TTC AGA

C ACG TGT TTA GAC CGA CCT CGG TTA AGG

D ACA GGA TTA GAT CGT CCG CTT TTC AGA



Model: topology AND branch lengths

q Parameters

topology )(t

branch lengths )( iv

A

B

3v

C

D

2v

1v
4v

5v
(expected amount of change)

),( vtq =



Model: molecular evolution

q Parameters

instantaneous rate matrix

(Jukes-Cantor)
   

Q =

[A] [C] [G] [T]

[A] - m m m

[C] m - m m

[G] m m - m

[T] m m m -

æ 

è 

ç 
ç 
ç 
ç 
ç 
ç 

ö 

ø 

÷ 
÷ 
÷ 
÷ 
÷ 
÷ 



Model: molecular evolution

Probabilities are calculated using the transition 

probability matrix P

4 /3

4 /3

1 1

4 4
( )

1 3

4 4

v

Qv

v

e

P v e

e








  
 


(change)

(no change)



Priors on parameters

 Topology
 all unique topologies have equal 

probability

 Branch lengths
 exponential prior (puts more weight on 

small branch lengths)



4 /3vp k ke v

Exp(1)v
Exp(1)v

The effect on data likelihood is most important

Jeffrey’s uninformative priors formalize this

Branch length Prob. of substitution

Scale matters in priors



Bayes’ theorem

( ) ( | )
( | )

( ) ( | ) d

f f D
f D

f f D

 


  




Posterior
distribution

Prior distribution ”Likelihood”

Normalizing constant

D = Data
 = Model parameters



tree 1 tree 2 tree 3
q

)|( Xf q

Posterior probability distribution

Parameter space
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tree 1 tree 2 tree 3

20% 48% 32%

We can focus on any parameter of interest 
(there are no nuisance parameters) by 
marginalizing the posterior over the other 
parameters (integrating out the 
uncertainty in the other parameters)

(Percentages denote marginal probability distribution on trees)



32.048.020.0

38.014.019.005.0

33.006.022.005.0

29.012.007.010.0

3

2

1

321

n

n

n

ttt
joint probabilities

marginal probabilities

Why is it called marginalizing?
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tree 1 tree 2 tree 3

always accept

accept sometimes

 Start at an arbitrary point 
 Make a small random move
 Calculate height ratio (r) of new state to old state:

 r > 1 -> new state accepted
 r < 1 -> new state accepted with probability r. If new 

state not accepted, stay in the old state

 Go to step 2

Markov chain Monte Carlo

The proportion of time the 
MCMC procedure samples 
from a particular parameter 
region is an estimate of that 
region’s posterior 
probability density

1

2b

2a

20 % 48 % 32 %



Metropolis algorithm

Assume that the current state has 
parameter values 

Consider a move to a state with parameter 
values  *

The height ratio r is

(prior ratio x likelihood ratio)

   

r =
f (q* |D)

f (q |D)
=
f (q*) f (D |q*) / f (D)

f (q) f (D |q) / f (D)
=
f (q*)

f (q)
´
f (D |q*)

f (D |q)



MCMC Sampling Strategies

 Great freedom of strategies:
 Typically one or a few related parameters 

changed at a time

 You can cycle through parameters 
systematically or choose randomly

 One ”generation” or ”iteration” or ”cycle” can 
include a single randomly chosen proposal (or 
move, operator, kernel), one proposal for each 
parameter, a block of randomly chosen 
proposals







Trace Plot



burn-in

stationary phase sampled with thinning
(rapid mixing essential)



Majority rule 
consensus tree

Frequencies 
represent the 
posterior 
probability of 
the clades

Probability of 
clade being true 
given data and 
model



Summarizing Trees
 Maximum posterior probability tree (MAP tree)

 can be difficult to estimate precisely
 can have low probability

 Majority rule consensus tree
 easier to estimate clade probabilities exactly
 branch length distributions can be summarized across all 

trees with the branch
 can hide complex topological dependence
 branch length distributions can be multimodal

 Credible sets of trees
 Include trees in order of decreasing probability to 

obtain, e.g., 95 % credible set

 “Median” or “central” tree



Adding Model Complexity

A

B

topology General Time Reversible

substitution model
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Adding Model Complexity

Gamma-shaped 
rate variation 
across sites



Priors on Parameters

 Stationary state frequencies
 Flat Dirichlet, Dir(1,1,1,1)

 Exchangeability parameters
 Flat Dirichlet, Dir(1,1,1,1,1,1)

 Shape parameter of scaled gamma 
distribution of rate variation across 
sites
 Uniform Uni(0,50)



Mean and 95% 
credibility 
interval for model 
parameters



Summarizing Variables

 Mean, median, variance common 
summaries

 95 % credible interval: discard the 
lowest 2.5 % and highest 2.5 % of 
sampled values

 95 % region of highest posterior 
density (HPD): find smallest region 
containing 95 % of probability



Credible interval

HPD
HPD HPD

Credible intervals and HPDs



Other Sampling Methods
 Gibbs sampling: sample from the conditional posterior (a variant of 

the Metropolis algorithm)

 Metropolized Gibbs sampling: more efficient variant of Gibbs 
sampling of discrete characters

 Slice sampling: less prone to get stuck in local optima than the 
Metropolis algorithm

 Hamiltonian sampling. A technique for decreasing the problem with 
sampling correlated parameters.

 Simulated annealing: increase ”greediness” during the burn-in 
phase of MCMC sampling

 Data augmentation techniques: add parameters to facilitate 
probability calculations

 Sequential Monte Carlo techniques: generate a sample of complete 
state by building sets of particles from incomplete states



Sequential Monte Carlo Algorithm for Phylogenetics
Bouchard et al. 2012. Syst. Biol.



3. Markov chain Monte 
Carlo



Convergence and Mixing

 Convergence is the degree to which 
the chain has converged onto the 
target distribution

 Mixing is the speed with which the 
chain covers the region of interest in 
the target distribution



Assessing Convergence

 Plateau in the trace plot
 Look at sampling behavior within the 

run (autocorrelation time, effective 
sample size)

 Compare independent runs with 
different, randomly chosen starting 
points



Convergence within Run

   

t =1+ 2 rk (q)
k=1

¥

åAutocorrelation time

where k() is the autocorrelation in the MCMC
samples for a lag of k generations

Effective sample size (ESS)

   

e =
n

t

where n is the total sample size (number of
generations)

Good mixing when t is small and e large



Convergence among Runs

 Tree topology:
 Compare clade probabilities (split frequencies)
 Average standard deviation of split frequencies 

above some cut-off (min. 10 % in at least one 
run). Should go to 0 as runs converge.

 Continuous variables
 Potential scale reduction factor (PSRF). 

Compares variance within and between runs. 
Should approach 1 as runs converge.

 Assumes overdispersed starting points
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Clade probability in analysis 1
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Clade probability in analysis 1
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Target distribution

Too modest proposals
Acceptance rate too high
Poor mixing

Too bold proposals
Acceptance rate too low
Poor mixing

Moderately bold proposals
Acceptance rate intermediate
Good mixing



Tuning Proposals

 Manually by changing tuning parameters
 Increase the boldness of a proposal if 

acceptance rate is too high
 Decrease the boldness of a proposal if 

acceptance rate is too low

 Auto-tuning
 Tuning parameters are adjusted automatically 

by the MCMC procedure to reach a target 
proposal rate



cold chain

heated chain

Metropolis-
coupled 
Markov chain 
Monte Carlo

a. k. a.

MCMCMC

a. k. a.

(MC)3



cold chain

hot chain



cold chain

hot chain



cold chain

hot chain



unsuccessful swap

cold chain

hot chain



cold chain

hot chain



cold chain

hot chain



cold chain

hot chain

successful swap



cold chain

hot chain



cold chain

hot chain



cold chain

hot chain

successful swap



cold chain

hot chain



Incremental Heating

( )iT l+= 1/1 { }1,...,1,0 -= ni

( )

( )

( )

( ) 62.0

71.0

83.0

00.1

|62.03

|71.02

|83.01

|00.10

Distr.

Xf

Xf

Xf

Xf

Ti

q

q

q

q

T is temperature,  is heating coefficient

Example for  = 0.2:

cold chain

heated chains



4. Bayesian Model Choice



Bayesian Model Sensitivity



Models, models, models
 Alignment-free models
 Heterogeneity in substitution rates and stationary 

frequencies across sites and lineages
 Relaxed clock models
 Models for morphology and biogeography
 Sampling across model space, e.g. GTR space and 

partition space
 Models of dependence across sites according to 

3D structure of proteins
 Positive selection models
 Aminoacid models
 Models for population genetics and phylogeography



Bayes’ Rule

   

f (q |D) =
f (q) f (D |q)

f (q) f (D |q) dqò
=
f (q) f (D |q)

f (D)

Marginal likelihood (of the data)

   

f (q |D,M) =
f (q |M) f (D |q,M)

f (D |M)

We have implicitly conditioned on a model:



Bayesian Model Choice

   

f M1( ) f D |M1( )
f M0( ) f D |M0( )

Posterior model odds:

   

B10 =
f D |M1( )
f D |M0( )

Bayes factor:



Bayesian Model Choice
 The normalizing constant in Bayes’ theorem, the 

marginal likelihood of the data, f(D) or f(D|M), can 
be used for model choice

 f(D|M) can be estimated by taking the harmonic 
mean of the likelihood values from the MCMC run. 
Thermodynamic integration and stepping-stone 
sampling are computationally more complex but 
more accurate methods

 Any models can be compared: nested, non-nested, 
data-derived; it is just a probability comparison

 No correction for number of parameters
 Can prefer a simpler model over a more complex 

model
 Critical values in Kass and Raftery (1997)



Simple Model Wins (from Lewis, 2008)



Bayes Factor Comparisons

Interpretation of the Bayes factor

2ln(B10) B10 Evidence against M0

0 to 2 1 to 3
Not worth more than a 
bare mention

2 to 6 3 to 20 Positive

6 to 10 20 to 150 Strong

> 10 > 150 Very strong



Bayesian Software
 Model testing

 ModelTest
 MrModelTest
 MrAIC

 Convergence diagnostics
 AWTY
 Tracer

 Phylogenetic inference
 MrBayes
 BEAST
 BayesPhylogenies
 PhyloBayes
 Phycas
 BAMBE
 RevBayes

 Specialized inference
 PHASE
 BAliPhy
 BayesTraits
 Badger
 BEST
 *BEAST
 CoEvol

 Tree drawing
 TreeView
 FigTree



Listening to lectures, 
after a certain age, 
diverts the mind too much 
from its creative pursuits. 
Any scientist who attends 
too many lectures and 
uses her own brain too 
little falls into lazy habits 
of thinking.

after Albert Einstein


