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= Probability 101
= Bayesian Phylogenetic Inference
= Markov chain Monte Carlo
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Averaging



1. Probability 101



Do not worry about your
difficulties in Mathematics. |
can assure you that mine
are still greater.

Albert Einstein




Jim Matthews. MEd




Continuous probability distributions

Uniform distribution
Beta distribution
Gamma distribution

Dirichlet distribution

MO R K

Exponential distribution



Discrete Probabillity

Random variable X
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m('/’/) I ) Distribution function
(E.g., uniform)

E = {Wv w,, W5} Event (subget of outcomes;
e.g., face with odd number)

Pr(£) = é.m(l/l/) Probability

wlE



Continuous Probabillity

Random variable X

Sample space
s (an interval)

Probability density
function (pdf)
(e.g. Uniform(0,1))

Event (a subspace of the

v
Disc with
circumference 1
Q=[0,1)
1 )
S(x) |
0 ,
0 a b 1
E = [a,b)

Pr(E)= ( f(x)dx

xTE

sample space)

Probability



Probability Distributions

Continuous

Distributions

o Uniform ¢

ISstribution

» Beta distribution

 Gamma distribution
 Dirichlet distribution

» Exponential distribution

* Normal distribution

* Lognormal distribution

* Multivariate normal distribution



Probability Distributions

Discrete Distributions

Bernoulli distribution
Categorical distribution
Binomial distribution
Multinomial distribution
Poisson distribution



Stochastic Processes

Stochastic Processes

 Markov chain

* Poisson process

* Birth-death process

« Coalescence

* Dirichlet Process Mixture
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Exponential Distribution

Exponential distribution X ~EXxp( /)

Parameters: [ = rate (of decay)
— -Ix
Probability density function: f(x)= fe

Mean. 1/14

-I'nl Exp(2)




Gamma Distribution

Gamma distribution X ~ Gamma(a, b)

Parameters: & =shape 0 =inverse scale

Probability density function: f (x) LLx
Mean: &alb

Scaled gamma; @=20

2

a-1 _-bx
e

Scaled Gamma



Beta Distribution

Beta distribution X ~ Beta(a,,a,)

Parameters: &,,a, = shape parameters

Probability density function: f(x) Lx®™(L- x)%™

a -1
Mode: o Defined on two proportions of a whole
a_'(ai -1) (a simplex)
4
Betal 10,10)
Beta(2,5

\ H\ BeraH 1
I."

f h'““-u,_ ", -
D 1 | 1 ! | | —

0 1




Dirichlet Distribution

Dirichlet distribution X ~ Dir(&):a={a,a,,...a,}

Parameters: & = vector of k shape parameters

Probability density function: f(x) tQx&

1

Defined on k proportions of a whole

Dir(1,1,1,1)

/L *\. \ Dir(300,300,300,300)




Conditional Probability

¥ S

2
Pr(H)=—=04 Joint probability: Pr(D,H) = 0 0.2

2
Pr(D)=—=03 Conditional probability: Pr(D|H) = 27 0.5



Bayes’ Rule

Reverend Thomas Bayes
(1701-1760)

Pr(4 | B) B Pr(B | A) ?



Bayes’ Rule

v

\ VA,

3.2 2
Pr(D,H)=Pr(D)Pr(H|D)= >~ £=% =
(DH)=Pr(D)Pr(H | D)= 2" 2=
4.2 2

=Pr(H)Pr(D|H) = —~ £=25=02
HPHDIE) =157 2710

Pr(D)Pr(H | D) =Pr(H)Pr(D|H)

Pr(H | D) =

Pr(H)Pr(D|H)

Pr(D)

Bayes' rule



Maximum Likelihood

Maximum Likelihood Inference

Data D; Model M with parameters &

We can calculate Pr(D|g) or f(D|Qq)
Define the likelihood function L(g)l f(D|Q)

Maximum likelihood: find the value of &that
maximizes L(6)

Confidence: asymptotic behavior, more
samples, bootstrapping



Bayesian Inference

Bayesian Inference

Data D; Model M with parameters &
We can calculate Pr(D|g) or f(D|9g)

We are actually interested in Pr(g|D) or f(q|D)

Bayes' rule:
Prior density
Posterior density ' »Likelihood”
. Do)~
f(@|D)= /(@) (D]g) Normalizing constant

S D)= Marginal likelihood of the data

Model likelihood

f(D)=0f()f(D]g)dg



Coin Tossing Example



DID THE SUN JUST EXPLODE?

(ITS NIGHT, S0 WERE NOT SURE.)

THIS NEUTRINO DETECTOR MERSURES
WHETHER THE SUN HAS GONE NOVA.

( THEN, TROWS TWO DICE. |F THEY

BOTH COME UP SiX, IT LIES TO US.
OTHERWISE, ITTELLS THE TRU.

LET's TRY.

DETEZTOR! HAS THE

ﬁNG)VE;wm? A
=0

FREQUENTIST STRTSTICIAN: BAYESIAN STATISTIOAN:

THE PROBABILTY OF THIS RESULT

HAPPENING BY CHANCE 15 3,=0027. BET YOU $50
GNCE p<0.05, T. CONCLUDE IT HANT.
THAT THE SUN HAS EXPLODED )

Taal




What is the probability of
your favorite team winning
the next ice hockey World
Championships?




World Championship Medalists

Gold Silver Bronze Medals
2007 [+l == a3
2008 mm B+l = = 5
2009 mm ¥l == mm
2010 hn B =m G 1
2011 == 0= m 3
2012 -
2013 mm 5
2014 mE = am 1
2015

2016



Prior Data 1 Posteriorl Data?2 Posterior 2

s 3 he n e 3 By out e O
+= 5 += in 4= 5 m=won = 5
am 5 mmm out B o e out am O
1 out 0 out 0
8 Bl n B 8 B out 0
5 I*I out I*I 0 I*I out 0
> in 5 out 0
1 other out other 0 other out 0
f(0) — f(9|D,) —

f(9) —— f(0|D,+D,)



L earn more:

« Wikipedia (good texts on most statistical distributions,
sometimes a little difficult)

« Grinstead & Snell: Introduction to Probability.
American Mathematical Society. Free pdf available
from:
http.//www.dartmouth.edu/~chance/teaching_aids/bo
oks_articles/probability book/amsbook.mac.pdf

« Team up with a statistician or a computational /
theoretical evolutionary biologist!



http://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf

2. Bayesian Phylogenetic
Inference



Infer relationships among three species:
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D The data

Taxon Characters
ACG TTA TTA AAT TGT CCT CTT TTC AGA
ACG TGT TTC GAT CGT CCT CTT TTC AGA

ACG TGT TTA GAC CGA CCT CGG TTA AGG

ACA GGA TTA GAT CGT CCG CTT TTC AGA



Model: topology AND branch lengths

g Parameters

topology (f)

branch lengths (v;)
(expected amount of change)

q=(t,v)



Model: molecular evolution

g Parameters

¢ [4] [C] [6] [T]0
g:A: - m m m.
o=¢cy m - m m=
\G1 m om - m .
& omomom -

Instantaneous rate matrix
(Jukes-Cantor)



Model: molecular evolution

Probabilities are ca

Iculated using the transition

probability matrix P

P(v) =e® =«

1 1
172 e (change)

E 4 § e *3 (no change)
4 4



Priors on parameters

= Topology

= all unique topologies have equal
probability

= Branch lengths

= exponential prior (puts more weight on
small branch lengths)



Scale matters in priors

v Exp(1) I Eﬁl)/
2.IO 4.IO E.IU 8.IU 16.0 0.0 | 0?2 | 0.|4 | U.IG
V p _ k . ke—4v/3
Branch length Prob. of substitution

The effect on data likelihood is most important

Jeffrey's uninformative priors formalize this



Bayes' theorem

D = Data
0 = Model parameters

Posterior Prior distribution  Likelihood"
distribution AN
\f(ng): f(0)f(D|6)

[f(©f(D]0o)do

Normalizing constant



Posterior probability distribution

=
)
>

Posterior probability

g

tree 1 tree 2 tree 3

Parameter space



We can focus on any parameter of interest
(there are no nuisance parameters) by
marginalizing the posterior over the other
parameters (integrating out the
uncertainty in the other parameters)

48% 32%

20%

tree 1 tree 2 tree 3

(Percentages denote marginal probability distribution on trees)



branch length vectors

Why is it called marginalizing?

333

trees

0.20 0.48 0.32

joint probabilities

0.29
0.33
0.38

marginal probabilities

>~
—
><



Markov chain Monte Carlo

=  Start at an arbitrary point
=  Make a small random move
=  Calculate height ratio (r) of new state to old state:

= r>1->new state accepted

= r<1->new state accepted with probability r. If new
state not accepted, stay in the old state

= (Gotostep?

always accept

The proportion of time the
MCMC procedure samples
from a particular parameter
region is an estimate of that
region's posterior
probability density

tree 1 tree 2 tree 3



Metropolis algorithm

Assume that the current state has
parameter values 6

Consider a move to a state with parameter
values 6~

The height ratio ris

= S@1D)_ fg)fDIg) /(D) _[(@G)- [(DIF)
fqiD)  f@rDlglf) f@ [f(Dlg)

(prior ratio x likelihood ratio)




MCMC Sampling Strategies

s Great freedom of strategies:

= Typically one or a few related parameters
changed at a time

= You can cycle through parameters
systematically or choose randomly

= One "generation” or "iteration” or "cycle” can
include a single randomly chosen proposal (or
move, operator, kernel), one proposal for each
parameter, a block of randomly chosen
proposals



Sliding Window Proposal

New values are picked umformly from a shding window
of s1ze & centered on x.

Tuning parameter: &

Bolder proposals: increase 8

More modest proposals: decrease

Works best when the effect on the probability of the
data is similar throughout the parameter range



Extending TBR

An internal branch a 1s chosen at random

The length of a 15 changed using a multiplier with tuning
paremeter A

The node x 1s moved, with one of the adjacent branches, in subtree A,
one node at a ime, each time the probability of moving one more
branch 1s p (the extension probability).

The node y 1s moved simularly in subfree B.

Bolder proposals: increase p
More modest proposals: decrease p
Changing A has little effect on the boldness of the proposal.



Trace Plot
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InL

-10950

-11000 -
-11050 -
-11100 -

-11150
-11200
-11250

stationary phase sampled with thinning

(rapid mixing essential)

\ burn-in
0 500000 1000000 1500000 2000000

(GGeneration



Collembola

92

Archaeognatha

Ephemenrda
66 | 66 99 QOdonata 1
| | { QOdonata 2
L——————Hemiptera 1
73 I&|_Pleco%tera 1
Plecoptera 2
L Dermaptera
100 y——— EBlattodea
90 b————NMantodea
— Orthoptera
b———————Phasmatodea
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100 |—Lhys_ar10pt92ra
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1 100 I Hemiptera 3
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L——Hymenoptera 9
Hymenoptera 2
55 98 — Hymenoptera 3
'—Hzmenogtera 4
Hymenoptera 6
99 p— Hyrmenoptera 7
L———Hymenoptera 8
69 W—Hymenoptera 10
|_:Hymenoptera 11
Hymenoptera 12
69 Hymenoptera 13
62 |_|_Eymennp§era ]é
menoptera
|—H¥menogtera 15
ymenoptera
H 17
Hymenoptera ]g
F——a7——Hymenoptera
99 100 88 — Hymenoptera 20
'—Hyrner10p§era 5113
ymenoptera
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—|1 00 59 I — Biptera %
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98 — Strepsiptera 1
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89 { 65 Strepsiptera 5
_| '—Stregsi Etera 6
Strepsiptera 4
Coleoptera 3
84 89 Coleoptera 4
64 52 Coleoptera 9
Coleoptera 10
91 8 Coleoptera 5
98 Coleoptera 6
y—Coleoptera 7

Coleoptera 8

Majority rule
consensus ftree

Frequencies
represent the
posterior
probability of
the clades

Probability of
clade being true
given data and
model



Summarizing Trees

= Maximum posterior probability tree (MAP tree)
= can be difficult to estimate precisely
= can have low probability

= Majority rule consensus tree
= easier to estimate clade probabilities exactly

= branch length distributions can be summarized across all
trees with the branch

= can hide complex topological dependence
= branch length distributions can be multimodal
= Credible sets of trees

= Include trees in order of decreasing probability to
obtain, e.g., 95 % credible set

= "Median” or "central” tree



Adding Model Complexity

% - Pclic Polac pTrATQ
_ ¢l 4 uc - Pelce  Prler+
gpArAG Pcles - Prler -

gpArAT Pcler  Peoler - g

topology (Z) General Time Reversible
branch lengths (v;) substitution model



Adding Model Complexity

Gamma-shaped
rate variation
across sites

Frequency
o




Priors on Parameters

= Stationary state frequencies
= Flat Dirichlet, Dir(1,1,1,1)
s Exchangeability parameters
=« Flat Dirichlet, Dir(1,1,1,1,1,1)
= Shape parameter of scaled gamma

distribution of rate variation across
Sites

= Uniform Uni(0,50)



1.35(0.98, 1.82)
3.24 (2.55, 4.06)
1.64 (1.24,2.11)
1.18 (0.89, 1.56)
5.93(4.63, 7.54)
1

0.32 (0.29, 0.35)
0.28 (0.26, 0.30)
0.20 (0.18, 0.22)
0.24 (0.22, 0.27)
0.28 (0.26, 0.30)

Mean and 95%
credibility
interval for model
parameters



Summarizing Variables

= Mean, median, variance common
summaries

» 95 % credible interval: discard the

lowest 2.5 % and highest 2.5 % of
sampled values

x 95 % region of highest posterior
density (HPD): find smallest region
containing 95 % of probability



Credible intervals and HPDs

| 1| 1 T II T

Credible interval



Other Sampling Methods

= Gibbs sampling: sample from the conditional posterior (a variant of
the Metropolis algorithm)

=  Metropolized Gibbs sampling: more efficient variant of Gibbs
sampling of discrete characters

= Slice sampling: less prone to get stuck in local optima than the
Metropolis algorithm

= Hamiltonian sampling. A technique for decreasing the problem with
sampling correlated parameters.

= Simulated annealing: increase “greediness” during the burn-in
phase of MCMC sampling

= Data augmentation techniques: add parameters to facilitate
probability calculations

= Sequential Monte Carlo techniques: generate a sample of complete
state by building sets of particles from incomplete states



Resampling Proposal Weighting

5 AT 521 a4
A —A A A
— I:B — B b ey E.EB . EB
L C L: (
-D D D D™\
w,, = 0.002 w,, = 0.02
SI.J S‘ 5 SJ.J S" 2
A CA A C—A
A/ ] By
EC - s g
D D D D
W= 0.001 W..=0.05
8 EH 833 )
—A ‘A —A —A
—_— = - . | | POS— - =gt s —B |-
¢ & —cC —C
D D D L—p
W,.= 0.01 W_.= 0.001

Sequential Monte Carlo Algorithm for Phylogenetics

Bouchard et al. 2012. Syst. Biol.



3. Markov chain Monte
Carlo



Convergence and Mixing

= Convergence is the degree to which
the chain has converged onto the
target distribution

= Mixing is the speed with which the
chain covers the region of interest in
the target distribution



Assessing Convergence

= Plateau in the trace plot

» Look at sampling behavior within the
run (autocorrelation time, effective
sample size)

= Compare independent runs with

different, randomly chosen starting
points



Convergence within Run

Autocorrelation time =1+ Zé; r.(q)

where p,(6) is the autocorrelation in the MCMC
samples for a lag of k generations

Effective sample size (ESS) e :g

where n is the total sample size (number of
generations)

Good mixing when t is small and e large



Convergence among Runs

= Tree topology:

= Compare clade probabilities (split frequencies)

= Average standard deviation of split frequencies
above some cut-off (min. 10 % in at least one
run). Should go to O as runs converge.

= Continuous variables

= Potential scale reduction factor (PSRF).
Compares variance within and between runs.
Should approach 1 as runs converge.

= Assumes overdispersed starting points
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Target distribution

Too modest proposals
Acceptance rate too high
Poor mixing

Sampled value

_________________ Too bold proposals
[ | ‘ T Acceptance rate too low
_____________ L - Poor mixing

Moderately bold proposals
Acceptance rate intermediate
Good mixing




Tuning Proposals

= Manually by changing tuning parameters

= Increase the boldness of a proposal if
acceptance rate is too high

= Decrease the boldness of a proposal if
acceptance rate is too low
= Auto-tuning

= Tuning parameters are adjusted automatically
by the MCMC procedure to reach a target
proposal rate



Metropolis-
coupled
Markov chain
Monte Carlo

a. k. a.
MCMCMC

a. k. a.

(MC)?

cold chain

heated chain




cold chain

hot chain

Y



cold chain

hot chain

Y



cold chain

hot chain
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cold chain

unsuccessful swap

hot chain
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hot chain
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cold chain

hot chain

Y



cold chain

successful swap

hot chain
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Incremental Heating

T is temperature, 1 is heating coefficient

T=1/Q+ 1) i=PL..,n-1]

Example for 4= 0.2:

T Distr.
1.00 f(q X)1'00<— cold chain

083 flg|Xx)*
071 f(g|X )062>

062 f(qg

heated chains

wWw N PO




4. Bayesian Model Choice



Bayesian Model Sensitivity

Model Correct Model Too Complex
1.00 1.00
Simulation: GTR+ I’ Simulation: JC b
Inference: GTR+ I Inference: GTR+ I .
0.75 c=100 - 075 c=100 .
-
0.50 4 0.50
O
E 0.25 1 0.25 1
S @) (b)
W] 0.00 T T T 0.00 T T -
- 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
>
-r% Model Too Simple Model Too Simple
o] 1.00 2 1.00
E Simulation: GTR+ I . Simulation: GTR+I”
o Inference: IC+ I . Inference: JC -
0751 100 e 0751 oo
- L ]
0.50 * 0.50 >
L ] L]
. *® L ]
0.25 - 0.25 e
L]
(c) (d)
0.00 r - - 0.00 r - T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Posterior Probability



Models, models, models

= Alignment-free models

= Heterogeneity in substitution rates and stationary
frequencies across sites and lineages

= Relaxed clock models
= Models for morphology and biogeography

= Sampling across model space, e.g. GTR space and
partition space

= Models of dependence across sites according to
3D structure of proteins

= Positive selection models
= Aminoacid models
= Models for population genetics and phylogeography




Bayes' Rule
f@fDlg) _ f(g/(D]g)

D) = —
M= slads 1)

/.

Marginal likelihood (of the data)

We have implicitly conditioned on a model:

_fgIM)f(D|g M)
D, M) =




Bayesian Model Choice

Posterior model odds:

/(M) /(D

M,)

f(M,) f(D

M,)

Bayes factor:

/(DI M)

f(D|M,)



Bayesian Model Choice

The normalizing constant in Bayes' theorem, the
marginal likelihood of the data, f(D) or f(D|M), can
be used for model choice

f(D|M) can be estimated by taking the harmonic
mean of the likelihood values from the MCMC run.
Thermodynamic integration and stepping-stone
sampling are computationally more complex but
more accurate methods

Any models can be compared: nested, non-nested,
data-derived; it is just a probability comparison

No correction for number of parameters

Car(\jprefer' a simpler model over a more complex
mode

Critical values in Kass and Raftery (1997)



Simple Model Wins (from Lewis, 2008)

sequence length = 1000 sites K80 model (entire 2d space)
true branch length =0.15
true kappa =1.0

JC69 model (just this 1d line)

10.0 0.3

K

ratio of transition rate
1o transversion rate

branch length

%0 JCB69 wins

1.0



Bayes Factor Comparisons

Interpretation of the Bayes factor

2In(B; ) Bio Evidence against M,

Not worth more than a

Ofto2 Ito3 bare mention

21to 6 3 to 20 Positive
6 to 10 20 t0 150 Strong

> 10 > 150 Very strong




Bayesian Software

Model testing
= Model|Test
= MrModel|Test
n Mr'AIC

Convergence diagnhostics
= AWTY

= Tracer
Phylogenetic inference
= MrBayes

BEAST
BayesPhylogenies
PhyloBayes

Phycas

BAMBE

RevBayes

= Specialized inference
PHASE
BAIiPhy
BayesTraits
Badger
BEST
*BEAST
CoEvol
= Tree drawing
= TreeView
= FigTree



Listening to lectures,
after a certain age,
diverts the mind too much
from its creative pursuits.
Any scientist who attends
too many lectures and
uses her own brain too
little falls into lazy habits
of thinking.

after Albert Einstein



